What Would a Real Renewable Energy Transition Look Like?

By Richard Heinberg, a senior fellow at the Post Carbon Institute and the author of Power: Limits and Prospects for Human Survival. This article was produced by the Earth Food Life Project and the Post Carbon Institute.

The transition from relying overwhelmingly on fossil fuels to using alternative low-carbon energy sources could be “unstoppable and exponential,” according to some experts. A boosterish attitude by many renewable energy advocates is understandable; overcoming people’s climate despair and sowing confidence could help muster the groundswell of motivation needed to end our collective fossil fuel dependency. But occasionally, a reality check is required.

In reality, energy transitions are a big deal and typically take centuries to unfold. Historically, they’ve been transformative for societies—whether we’re speaking of humanity’s taming of fire hundreds of thousands of years ago, the agricultural revolution 10,000 years ago, or our adoption of fossil fuels starting roughly 200 years ago. Given 1) the current size of the human population—there are eight times as many of us alive today compared to 1820 when the fossil fuel energy transition was underway, 2) the vast scale of the global economy, and 3) the unprecedented speed with which the transition will have to be made to avert catastrophic climate change. A rapid renewable energy transition is easily the most ambitious enterprise our species has ever undertaken.

The evidence shows that the transition is still in its earliest stages, and at the current rate, it will fail to avert a climate catastrophe. This will result in the death of an unimaginable number of people or forced migration, with most ecosystems transformed beyond recognition.

We’ll unpack why the transition is such an uphill slog. Then, crucially, we’ll explore what a real energy transition would look like and how to make it happen.

Why This Is (So Far) Not a Real Transition

Despite trillions of dollars being spent on renewable energy infrastructure, carbon emissions are still increasing, not decreasing, and the share of world energy coming from fossil fuels is only slightly less today than 20 years ago. In 2024, the world will use more oil, coal, and natural gas than it did in 2023.

While the U.S. and many European nations have seen a declining share of their electricity production coming from coal, the continuing global growth in fossil fuel usage and CO2 emissions overshadows any cause for celebration.

Why is the rapid deployment of renewable energy not resulting in declining fossil fuel usage? The main culprit is economic growth, which consumes more energy and materials. So far, the annual increase in the world’s energy usage has exceeded the energy added each year from new solar panels and wind turbines. Fossil fuels have supplied the difference.

So, for now, we are not experiencing a real energy transition. All that humanity is doing is adding energy from renewable sources to the growing amount of energy it derives from fossil fuels. The much-touted energy transition could, if somewhat cynically, be described as just an aspirational grail.

How long would it take for humanity to fully replace fossil fuels with renewable energy sources, accounting for both the growth trajectory of solar and wind power and the continued expansion of the global economy at 3 percent per year? Economic models suggest the world could obtain most of its electricity from renewables by 2060 (though many nations are not on a path to reach even this modest marker). However, electricity represents only about 20 percent of the world’s final energy usage; transitioning the other 80 percent of energy usage would take longer—likely many decades.

However, to avert catastrophic climate change, the global scientific community says we must achieve net-zero carbon emissions by 2050—in just 25 years. Since it seems physically impossible to get all of our energy from renewables that soon while still growing the economy at 3 percent, the Intergovernmental Panel on Climate Change (IPCC), the international agency tasked with studying climate change and its possible remedies, assumes that humanity will somehow adopt carbon capture and sequestration technologies at scale—including technologies that have shown to be ineffective—even though there is no existing way of paying for this vast industrial build-out. This wishful thinking on the part of the IPCC is surely proof that the energy transition is not happening at sufficient speed.

The energy transition is not happening at the required pace because governments, businesses, and many advocates have set unrealistic goals of reducing emissions while still pursuing economic growth. Also, the tactical and strategic global management of the effort is insufficient. We will address these problems and provide answers concerning how we can support a true energy transition.

The Core of the Transition is Using Less Energy

At the heart of most discussions about the energy transition lie two enormous assumptions: that the transition will leave us with a global industrial economy similar to today’s in terms of its scale and services, and that this future renewable energy economy will continue to grow, as the fossil-fueled economy has done in recent decades. But both of these assumptions are unrealistic. They flow from irrational expectations: we want the energy transition to be completely painless, with no sacrifice of profit or convenience. That goal is understandable since it would presumably be easier to enlist the public, governments, and businesses in an enormous new task if no extra cost is incurred (though the history of overwhelming societal effort and sacrifice during wartime might lead us to question that presumption).

But the energy transition will undoubtedly entail costs. Aside from tens of trillions of dollars in required monetary investment, the energy transition will require energy—lots of it. It will take energy to build solar panels, wind turbines, heat pumps, electric vehicles, electric farm machinery, zero-carbon aircraft, batteries, and the rest of the vast panoply of devices that would be required to operate an electrified global industrial economy at the current scale.

In the early stages of the transition, most of that energy for building new low-carbon infrastructure will have to come from fossil fuels, since those fuels still supply more than 80 percent of world energy, and using only renewable energy to build transition-related machinery would take far too long. So, the transition itself, especially if undertaken quickly, will entail a large pulse of carbon emissions.

Several teams of scientists have been seeking to estimate the size of that pulse; according to a study published in the journal Nature in November 2022, transition-related emissions will be substantial, ranging from 70 to 395 billion metric tons of CO2 “with a cross-scenario average of 195 GtCO2”—the equivalent of more than five years’ worth of global carbon CO2 emissions at current rates. The only ways to minimize these transition-related emissions would be, first, to aim to build a substantially smaller global energy system than the one we are trying to replace, and second, to significantly reduce energy usage for non-transition-related purposes—including transportation and manufacturing, cornerstones of our current economy.

In addition to energy, the transition will require materials. While our current fossil fuel energy regime extracts billions of tons of coal, oil, and gas, plus much smaller amounts of iron, bauxite, and other ores for making drills, pipelines, pumps, and other related equipment, the construction of renewable energy infrastructure at commensurate scale would require far larger quantities of non-fuel raw materials—including copper, iron, aluminum, lithium, iridium, gallium, sand, and rare earth elements.

While some estimates suggest that global reserves of these elements are sufficient for the initial build-out of renewable energy infrastructure at scale, there are still two big challenges. First, obtaining these materials will require greatly expanding extractive industries along with their supply chains. These industries are inherently polluting and inevitably degrade the land. For example, more than 125 tons of rock and soil must be displaced to produce one ton of copper ore. The rock-to-metal ratio is even worse for some other ores. According to the World Economic Forum, “As the push for clean energy technologies continues, demand for certain critical minerals is forecasted to rise by up to 500 percent.”

Mining operations often take place on Indigenous peoples’ lands, and the tailings from those operations pollute rivers and streams. Nonhuman species and communities in the Global South are already traumatized by land degradation and toxification; greatly expanding resource extraction—including deep-sea mining—would only multiply the wounds.

The second material challenge is that renewable energy infrastructure must be replaced periodically—every 20 to 30 years. Even if Earth’s minerals are sufficient for the first full-scale build-out of panels, turbines, and batteries, will limited mineral abundance permit continual replacements?

Transition advocates say that we can avoid depleting the planet’s ores by recycling minerals and metals after constructing the first iteration of solar and wind technology. However, recycling is never complete, with some materials degraded in the process. One analysis, published in the Emergent Scientist in 2022, suggests recycling would only buy a couple of centuries worth of time before depletion would lead to the end of replaceable renewable energy machines—and that’s assuming a widespread, coordinated implementation of recycling on an unprecedented scale. Again, the only real long-term solution is to aim for a much smaller global energy system.

A societal transition from fossil fuel dependency to reliance on low-carbon energy sources will be impossible without substantially reducing overall energy usage and maintaining this lower rate of energy usage indefinitely. This transition isn’t just about building lots of solar panels, wind turbines, and batteries. It is about organizing society differently so that it uses much less energy and gets the energy it uses from sources that are sustainable over the long run.

How We Could Achieve This in Seven Concurrent Steps

We need to act now to turn the tide on the climate crisis. By taking these seven steps, we can ensure that we end the cycle of destruction and move toward a more sustainable way of living:

1. Cap global fossil fuel extraction through international treaties and annually lower the cap

We will not be able to reduce carbon emissions until we reduce fossil fuel usage—it’s just that simple. Rather than trying to achieve this by expanding on the existing renewable energy sources (which haven’t resulted in lower emissions), it makes far more sense to limit fossil fuel extraction. In 2007, I wrote up the basics of a treaty in my book, The Oil Depletion Protocol, explaining how nations could cooperate to reduce their dependence on oil and move toward a global rationing system.

2. Manage energy demand fairly

Reducing fossil fuel extraction presents a problem. Where will we get the energy required for transition purposes? Realistically, it can only be obtained by repurposing the energy we use. That means most people, especially in highly industrialized countries, would have to use significantly less energy directly and indirectly (in terms of energy embedded in products and services provided by society, like road building). Social means of managing energy demand will be required to accomplish this with minimum societal stress.

The fairest and most direct way to manage energy demand is via quota rationing. Tradable Energy Quotas (TEQs) is a system designed by British economist David Fleming; it rewards energy savers and gently punishes energy guzzlers while ensuring everyone gets the energy they need. Every adult would be given an equal free entitlement to TEQ units each week. If you use less than your entitlement of units, you can sell your surplus. If you need more, you can buy them. All trading takes place at a single national price, which will rise and fall in line with demand.

3. Manage the public’s material expectations

Persuading people to accept using less energy will be hard if everyone still wants to use more. Therefore, it will be necessary to manage the public’s expectations. This may sound technocratic and scary, but society has already been managing the public’s expectations for more than a century via advertising—which constantly delivers messages encouraging everyone to consume as much as possible. Now, we need different messages to set different expectations.

What’s our objective in life? Is it to have as much stuff as possible or to be happy and secure? Our current economic system assumes the former, and we have instituted an economic goal (constant growth) and an indicator (gross domestic product, or GDP) to help us achieve that goal. But more people using more products and energy leads to increased rates of depletion, pollution, and degradation, thereby imperiling the survival of humanity and the rest of the biosphere. In addition, the goal of happiness and security is more in line with cultural traditions and human psychology.

If happiness and security are to be our goals, we should adopt indicators that help us achieve them. Instead of GDP, which measures the amount of money changing hands in a country annually, we should measure societal success by monitoring human well-being. The tiny nation of Bhutan has been doing this for decades with its gross national happiness (GNH) indicator, which it has offered as a model for the rest of the world.

4. Aim for population decline

If the population is constantly growing while available energy is capped, that means ever less energy will be available per capita. Even if societies ditch GDP and adopt GNH, the prospect of continually declining energy availability will present adaptive challenges. How can energy scarcity impacts be minimized? The obvious solution is to welcome population decline and plan accordingly.

The global population will start to decline sometime during this century. Fertility rates are falling worldwide, and China, Japan, Germany, and many other nations are already seeing population shrinkage. Rather than viewing this as a problem, we should see it as an opportunity. With fewer people, energy decline will be less of a burden per capita.

There are also side benefits: a smaller population puts less pressure on wild nature and often raises wages. We should stop pushing a pronatalist agenda; ensure that women have the educational opportunities, social standing, security, and access to birth control to make their own childbearing choices; incentivize small families, and aim for the long-term goal of ensuring a stable global population closer to the number of people who were alive at the start of the fossil fuel revolution (voluntary population shrinkage, however, will only help us to a small extent in reaching immediate emissions reduction targets).

5. Target technological research and development to the transition

Today, the main test of any new technology is its profitability. However, the transition will require new technologies to meet a different set of criteria, including low-energy operation and minimization of exotic and toxic materials. Fortunately, a subculture of engineers is already developing low-energy and intermediate technologies that could help run a right-sized circular economy.

6. Institute technological triage

Many existing technologies don’t meet these new criteria. So, during the transition, we will be letting go of familiar but ultimately destructive and unsustainable machines.

Some machines will be easier to live without than others. For instance, gasoline-powered leaf blowers will be easy to say goodbye to. Commercial aircraft will be harder. Artificial intelligence is an energy guzzler we managed to live without until very recently and might be something we use only sparingly in the future. Weapons industries offer plenty of examples of machines we could live without. For guidance along these lines, consult the literature of technology criticism.

7. Help nature absorb excess carbon

The IPCC is right: if we are to avert catastrophic climate change, we must capture carbon from the air and sequester it for a long time. But not with machines. Nature already removes and stores enormous amounts of carbon; we just need to help it do more (rather than reducing its carbon-capturing capabilities, which is what humanity is doing now). Reform agriculture to build soil rather than destroy it. Restore ecosystems, including grasslands, wetlands, forests, and coral reefs.

Implementing these seven steps will change everything. The result will be a world that’s less crowded, where nature is recovering rather than retreating, and where people are healthier (because they’re not soaked in pollution) and happier.

Granted, this seven-step program appears politically unachievable today, but that’s largely because humanity hasn’t yet fully faced the failure of our current path of prioritizing immediate profits and comfort above long-term survival—and the consequences of that failure. Given better knowledge of where we’re currently headed and the alternatives, what is politically impossible today could quickly become inevitable.

Social philosopher Roman Krznaric writes that profound social transformations are often tied to wars, natural disasters, or revolutions. But crisis alone is not positively transformative. There must also be ideas for different ways to organize society, and social movements energized by those ideas must also exist. We have a crisis and (as we have just seen) some good ideas for how to do things differently. Now we need a movement.

Building a movement takes political and social organizing skills, time, and hard work. Even if you don’t have the skills for organizing, you can help the cause by learning about what a real energy transition requires and educating people you know about it, advocating for degrowth or related policies, and reducing your own energy and materials consumption.

Even with a new social movement advocating for a real energy transition, there is no guarantee that civilization will emerge from this century of unraveling in a recognizable form. But we all need to understand this is a fight for survival in which cooperation and sacrifices are required, just as in war. Until we feel that level of shared urgency, there will be no real energy transition and little prospect for a desirable human future.

Print Friendly, PDF & Email

27 comments

  1. CA

    https://x.com/RnaudBertrand/status/1851796812178534550

    Arnaud Bertrand @RnaudBertrand

    In a normal world, this would be a scandal of epic proportions: the global energy transition appears to be slowing down. The main reason? “Protectionist policies that block imports of world-leading low-priced Chinese renewable technology”

    https://heatmap.news/climate/energy-transition-outlook-2024# *

    So, to summarize, the West told the whole planet we faced an existential threat with climate change, they led everyone to agree on a global commitment to transition away from fossil fuels with the Paris agreement, but now that it’s clear that China is the global leader in much of the low-carbon technology sector they’re walking away from the commitments they themselves pushed the rest of the world into and suddenly aren’t so keen on transitioning anymore…

    If that doesn’t make you immensely cynical, I don’t know what will… We’re setting up a Darwin award to end all Darwin awards…

    * The Energy Transition Is Slowing Down

    9:22 PM · Oct 30, 2024

    1. steppenwolf fetchit

      If protectionist policies were part of a broader policy of solar-panel industry buildup or restoration within the protectionising countries, such that the very same number of solar panels was being made country-by-country as what is now being made in China, would you welcome that outcome? Or would you object to it?

      1. CA

        Fascinating question. Protectionist policy should be resisted in high technology fields because such policy limits science applications in the fields. This is surely so in solar development:

        https://news.cgtn.com/news/2024-10-19/Chinese-scientists-develop-novel-high-efficiency-solar-cell-1xOZST4UXPq/p.html

        October 19, 2024

        Chinese scientists develop novel high-efficiency solar cell

        An international team led by scientists with the Institute of Chemistry under the Chinese Academy of Sciences has developed a new type of high-efficiency solar cell.

        The perovskite-organic tandem solar cell can achieve a photoelectric conversion efficiency of 26.4 percent, the highest efficiency for such solar cells to date, according to Li Yongfang, an academician and a researcher at the institute.

        Perovskite solar cells and organic solar cells represent the next generation of solar cells. Compared to the currently widely used crystalline silicon solar cells, they offer advantages such as ease of preparation, light weight and the ability to be fabricated into flexible devices.

        These features present significant application prospects in areas such as portable energy, building-integrated photovoltaics and indoor photovoltaics.

        The novel cell utilizes wide-bandgap perovskite materials to absorb short-wavelength sunlight and the narrow-bandgap organic active layer to absorb near-infrared long-wavelength sunlight, Li said.

        He added that this combination significantly expands the usable solar spectrum and effectively enhances the energy conversion efficiency of the device.

        The study * was published in the journal Nature.

        * https://www.nature.com/articles/s41586-024-08160-y

        1. steppenwolf fetchit

          Very well. If the Perovskite-organic China-tandem photocell is superior, then let’s at least have the social-survival protectionism to allow China to sell them in America only if China makes them in America. China can then repatriate the profits back to China all it wants. At least some Americans would be left with something to do for money in our ” no-money = you-die” society.

          1. CA

            “If the Perovskite-organic China-tandem photocell is superior, then let’s at least have the social-survival protectionism to allow China to sell them in America only if China makes them in America…”

            Absolutely; importantly.

    1. M Morrissey

      Precisely. This is at best a goal but more likely a pipe dream–especially if Trump resumes power.

  2. Alan Yang

    It is not enough to simply say ‘Stop Capitalism!’ The wasteful consumption and the hunger for evermore profit and decadent opulence of the elites (and indeed most of the people), is a spiritual/cultural problem. The hunger and drive to live for an authentic meaning ( that naturally resonates and inspires the self to search, uphold and sacrifice for, as opposed to a meaning dictated by forces and institutions exterior to the person) has been easily opiated via opulent materialism, hedonism and power. Kings, religious elites such as the Catholic Church, aristocrats, and rich bourgeoise have long been infected by this human tendency, even though they may have verbally articulated more noble reasons for desiring wealth. The Oligarchs of today use the language of capitalism and individualism, ambition, innovation and freedom to justify their wealth accumulation. Via increasing Technological and organizational efficacy, the pleasures of material consumption have been made available to the working class of much of the west, and some of those in other parts of the world. The success of technology progress has created a faith in progress in the masses and the elites. And although presenting the evidence in a manner that is concretely comprehensible at the individual level (such as increasing number of climate Disasters per year, lower food crop harvest per acre which translates into rising food prices) as opposed to abstract averages which are meaningless to the experiences of the individual (like CO2 ppm level, global average temperature rise 1.5 deg.C) will help; it does not answer the question of ‘Why should I sacrifice my pleasures and comforts NOW for an unknown future?’

    Although knowledge of what we need to do now to lessen the upcoming disaster is necessary, we also need to focus on a vision for a society that is worth living for ; clear, concrete, and physically doable proposals and policies that people can understand, that would make their lives better (more secure and stable, less stress and insecurity) and thus rally towards. Only by this can political will be generated. Realize that those who now profit from the system will become galvanized against the rising of political will. Hence the vision crafted must be credible and be worthy of the fight and sacrifice needed to bring about its fruition.

    1. jefemt

      Well said. If living in the US, go stand at a busy intersection on a Friday afternoon from 3 PM to 6 PM.
      Watch, marvel, and ponder. I’m a defeatist— Judgy McJudgeface says enlightenment, cooperative creation, agreement on and pursuit of an Us-All future is not even on most folks radar, much less their day’s to-do list. We have perfected inane dither.
      Extrapolate that intersection to most towns and cities, in the US and beyond— it overwhelms.

      Now, on a completely tangential notion…. how will AI help? Or, perhaps, would a transformative alternative new kid on the block, e-bicycles, be more positively transformational than AI, for society writ large?
      I’m thinking AI will accelerate our demise as a species, e bikes might slow it, and pedal bikes, walking, staying home to garden and dehydrate and put food by might be an even more attenuating step, a better answer.

      My two alloy- laden pennies… save that copper for ebikes and computers!

      1. tegnost

        My 3 (4) alloy laden pennies are ban AI, ban fracking, ban high fructose corn syrup, and corn to ethanol production (the last two are kind of connected in that growing corn for those uses is imho a misallocation of land)
        Could be done tomorrow, in my not so humble opinion.
        On the other hand, getting used to living with grizzly bears, wolves and tigers et al again may cause some issues…

      2. Susan the other

        “We have perfected inane dither.” I agree. We modern humans are very strung out. We evolved to walk on just two legs so we could use our hands to make tools of convenience and now a million years later all we do is tool around in our gas guzzlers. The one thing that actually drives us is our desire for convenience, imo. But so far it has been pretty elusive in spite of all our gadgetry. I feel like it is actually driving us nuts. I still think one good way for us to begin to deprogram our dithering selves is to create walkable self-sufficient neighborhoods. These days a corner store would be helpful in several ways. And local schools, walkable, but connected to a city school system electronically, might not be too quaint.

    2. Rod

      Well spoken for so early morning.
      Big Job.
      The Author states: We need to act now to turn the tide on the climate crisis.
      AMEN
      And thanks to NC for their daily inclusion of articles calling our attention to that fact.
      That initiative corresponds to #3. Manage the public’s material expectations
      In line with that “Think Global, Act Local” thinking and acting that is attainable for all of us reading.
      But regarding #7–this was in the Links a day or so ago. Not a panacea–but very encouraging:

      https://news.berkeley.edu/2024/10/23/capturing-carbon-from-the-air-just-got-easier/

    3. steppenwolf fetchit

      Here is a possible answer to your question. If you can show me how sacrificing my pleasures and comforts NOW can force an even greater sacrifice of pleasures and comforts upon the rich people, then I will listen to your presentation.

      Do you offer a credible path to irreversible revenge and the infliction of agonizing lifelong suffering upon the people who put us in this position? If you do, then you may be able to rally a movement of millions.

      1. AJB

        Spot on. And it seems the energy transition is only acceptable if the usual suspect billionaires can get handouts from governments and make huge profits from whatever policies the politicians they own can pass for them.

        For the billionaires it’s ‘energy rationing for thee, opulence, private jets and profit for me’.

  3. IEL

    I can’t see steps 1 and 2 happening, given the lack of trust and cooperation between major states now.

    However, a carbon tax and dividend could work at the national level, and carbon tariffs might work to dissuade imports from more polluting countries.

  4. ISL

    Although the article makes some points, it neglects that neoliberalism is horrid at the long-term planning needed to extract minerals (or oil) – making this a very depressing article.

    “Cap global fossil fuel extraction through international treaties and annually lower the cap” – aka the let them eat cake plan. Hmmm. how did that work out?

    And how is an energy quota going to help when the energy infrastructure doesn’t exist (Nigeria?).

    The fish doesn’t know it swims in water, but all the corporate law incentives (and developing world needs and demands based on basic morality, are a better explanation of why so much money can be spent (the transition) to enrich so few people while accomplishing so little.

    One might also add that wars, preparing for wars, and the political decisions associated with wars (driven by the West’s demand to remain hegemonic and exploitative) mean greenhouse warming treaties are not worth the ink to print them (Minsk 2? Germany restarting coal production, etc…).

    So many elephants in the room (there are many more I can think of)…

  5. ciroc

    A machine just for blowing leaves and an airplane just for transporting people who want to spend their leisure time in distant countries are both equally unnecessary.

  6. dave -- just dave

    Heinberg has been thinking and writing about this for a long time, and I think he’s right that:

    Given better knowledge of where we’re currently headed and the alternatives, what is politically impossible today could quickly become inevitable.

    Recently I’ve been going over talks by Michael Dowd – author, lecturer, and advocate of ecotheology and post-doom – not the police officer. He emphasized how very natural it is to use denial – maybe more nicely called selective inattention – in the face of very unpleasant facts. He asserted that the main problem is anthropocentrism, and that once a civilization’s decline begins to speed up, there’s no example of it recovering. Hence his commitment to his “post-doom” message [see Wikipedia], even though only a very small minority will be able to hear it.

    Will a larger minority, eventually including those in political and economic decision points, be able to hear Heinberg’s “real renewable energy transition” message – the better knowledge he refers to – without it being drowned out by misinformation? If that tipping point is reached, will it be in time to avert catastrophic climate change – which is just one manifestation of ecological overshoot?

    Energy and matter will keep obeying the laws of physics and chemistry. Microorganisms, plants, and animals will manifest the Universal Will to Become in their own idiosyncratic ways. People will make mental models about what might happen, and what they would prefer to happen. The century I am a time traveler from – the 20th – was eventful. It looks like the 21st will be even more so.

  7. Mikel

    If renewable energy was the priority, there could possibly have been more of that yesterday.
    The big drag is that the establishment wants to attach surveillance tech to everything. That has them more excited than renewable energy.

  8. BeliTsari

    Atlantic Coast Pipeline was to take gas, fracked around Pittsburgh 570mi South, to generate electricity to run air-conditioning for people in denial as to exponential AGW from fracking methane to run air-conditioning!

    At 72, I’m still shopping with backpack & bicycle, in recycled, ridiculously old food containers. LEDs & area water heaters. In Manhattan; so PV, geothermal, wind & aluminum water preheat not in use. I’d never wasted food & cook with thermal cooker, wok & mostly vegetarian. Used PHEV, 200mi away by AMTRAK. How many more could have these options WITH substantial community gardens, co-op or CSA food? Probably be less than a days worth of genocide or war to save fracking?

  9. thousand points of green

    At my job I use vast amounts of electricity because the jobsite ( a Major Midwestern Academic Hospital) uses vast amounts of electricity. I am not going to quit my job in this ” no money = you die” society just to be greener.

    At my personal residential home dwelling unit, I used last month 20 cubic feet per day of natural gas and 1.1 kilowatt-hours of electricity. If I have any personal credibility to comment upon issues of conservation lifestyling, it resides in my achieved figures of personal residential home-use of gas and electricity.

  10. marku52

    “If you need more, you can buy them.”
    God forbid we take away the billionaire’s 3rd private jet and fourth beach house.

    Really, until the top shows the slightest impulse to sacrifice, this is all hot air.

  11. MFB

    A transition to renewable energies would be extremely difficult, as was obvious from the first, and would require strong governments independent of plutocracy. No western government is independent of plutocracy, and few are strong. Therefore the notion of a transition to renewable energies has been simply a plutocratic scam from the first.

    The lack of any political base for the implementation of the largely sensible proposals in the piece is what makes it so frustrating. Especially because the general public could easily be won over to most of the ideas, which would generate huge amounts of real employment.

  12. WillD

    A wise man I knew, once wrote in a book of his that real change is “an inner emotional creative act”.

    He said it was not a conscious psychological or mental act, rather an unconscious inner shift – one that more often than not is not noticeable by the person as they changed.

    You could say they changed because they genuinely wanted to rather than because they decided they ought to.

    I think that we will not change our behaviour without changing our thinking & feeling, and we won’t change them by consciously trying or deciding to. We must feel the desire to change – emotionally.

    The changes we need as a species, not just energy usage, won’t happen until we genuinely change our thinking and subsequent behaviour. The change must be real.

Comments are closed.