Geoengineering Could Alter Global Climate. Should It?

Yves here. This article describes some of the many concerns about geoengineering, above all the inability to properly model what some of the knock-on effects might be. A big reason that climate models have underestimated the pace of recent change is missing the severity of impact of some positive feedback loops, like methane releases from permafrost. It’s not hard to see why most would be leery of schemes that rest on reducing the amount of sunlight, when photosynthesis is essential for plants, which means agriculture and food production.

You’ll see below that unregulated and often non-transparent experiments are already underway. And what happens when Davos Man wannabe savior try to go big?

By Ramin Skibba (@raminskibba), an astrophysicist turned science writer and freelance journalist who is based in the Bay Area. He has written for WIRED, The Atlantic, Slate, Scientific American, and Nature, among other publications. Originally published at Undark

In April, in the Bay Area town of Alameda, scientists were making plans to block the sun. Not entirely or permanently, of course: Their experiment included a device designed to spray a sea-salt mist off the deck of a docked aircraft carrier. The light-reflecting aerosols, the scientists hoped, would hang in the air and temporarily cool things down in the area. It would have been the first outdoor test in the United States of such a machine, had the city council not shut it down before the experiment was concluded.

One of the goals of the experiment was to see if such an approach might eventually show a way to ease global warming. In a statement to the media on June 5, the researchers — a team from the University of Washington that runs the Coastal Atmospheric Aerosol Research and Engagement program — said the “very small quantities” of mist were not designed to alter clouds or local weather. The City of Alameda, along with many of its residents, though, were unconvinced, raising concerns about possible public health risks and a lack of transparency. City officials declined an interview request, but at the city council meeting at which the proposal was unanimously rejected, one attendee noted: “The project proponents went to great lengths to avoid any public scrutiny of their project until they had already operationalized their scheme. This is the complete antithesis of transparent, fact-based, inclusive, and participatory decision making.”

The concept of using technology to change the world’s climate, or geoengineering, has been around for a couple of decades, although so far it has been limited to modeling and just a handful of small-scale outdoor experiments. Throughout that time, the idea has remained contentious among environmental groups and large swaths of the public. “I think the very well-founded anxiety about experiments like this is what they will lead to next and next and next,” said Katharine Ricke, a climate scientist and geoengineering researcher at the Scripps Institution of Oceanography and the School of Global Policy & Strategy at the University of California San Diego.

In the best-case scenarios, successful geoengineering experiments could put a pause on or slow down the warming of Earth’s climate, buying time for decarbonization and perhaps saving lives. But other possibilities loom too: for example, that a large-scale experiment could trigger droughts in India, crop failures, and heavy rainstorms in areas that are wholly unprepared.

Indeed, skeptics sometimes associate geoengineering with supervillain behavior, like a famous episode of The Simpsons in which the robber baron Mr. Burns blocks the sun. They warn that outdoor experiments could set humanity down a slippery slope, allowing powerful billionaires or individual countries to unleash hazardous technologies without input or agreement from the public more broadly, all of whom would be affected.

Such an approach could also distract people from expanding decarbonization efforts. “Geoengineering doesn’t tackle the root causes of climate change; it’s arranged to counter some of the impacts, but it involves intervening in Earth’s systems at an absolutely enormous scale,” said Mary Church, the geoengineering campaign manager for the Fossil Economy program at the Center for International Environmental Law.

But now that human-caused climate change has accelerated, and with devastating effects already underway around the world, what previously appeared to be a risky Hail Mary technofix has gained respectability. Some scientists, including Ricke, as well as some environmentalists, political officials, and business leaders now call for tests of geoengineering technologies that could one day be used in an ambitious, or perhaps desperate, attempt to artificially cool the planet. Such outdoor experiments, these proponents argue, could demonstrate a particular approach’s utility and finally assuage critics’ concerns. Talk of solar geoengineering has become so widespread that people on the fringe, like Robert F. Kennedy, Jr., Donald Trump’s pick to head the U.S. Department of Health and Human Services, have even espoused the conspiracy theory that the government, or Bill Gates, is already funding such experiments, through airplanes’ “chemtrail” emissions (which have always been of water vapor, not secret chemicals).

The stakes are high. Climate change is already changing nearly every realm of life across the planet, driving searches for all conceivable solutions, including ones that look risky. If people one day decide to proceed with some kind of geoengineering, they’ll first have to show that it’ll work, that it’ll be safe, and that the risks are bearable.

There’s no clear course on who gets to make such decisions, though. With no overarching governance on a technology that could — and will, if it works as intended — have global effects, current rules and regulations on smaller solar geoengineering experiments in the United States are limited to the local and state governments where such experiments may take place, which are ultimately led by officials with different perspectives and levels of expertise. (The lack of global governance has prompted government scientists in the U.S. and elsewhere to monitor the atmosphere for evidence of geoengineering experiments.)

And in that regulatory vacuum, all sorts of political questions arise, said Frank Biermann, a researcher of global sustainability governance at Utrecht University. Who will own the technology? Who decides how it will be used? What should be done if someone like Elon Musk, Donald Trump, or Vladimir Putin deploys it on their own? “All these questions, scientists have not considered them,” he said. “They just think, ‘this is a cool idea.’”

Some researchers, Biermann argued, have fallen prey to something he calls “the ‘Captain Kirk fallacy’”: The idea that super smart people, like those in a spaceship cockpit in the series Star Trek, just have to press a few buttons to solve all problems.


Modern geoengineering schemes date back to the early 2000s, when scientists first suggested an unprecedented experiment: If they dumped iron filings in the ocean, the material could spark vast phytoplankton blooms that would in turn draw in carbon dioxide from the atmosphere. Afterwards, the algae would eventually die and sink to the ocean floor, the theory suggested, taking the carbon down, too.

Such an experiment isn’t without risk. When agricultural run-off enters the ocean, for instance, pesticides and artificial fertilizers have caused toxic algae blooms, posing problems for fisheries and public health. Still, in 2004, a team led by oceanographer Victor Smetacek at Germany’s Alfred Wegener Institute tested the concept with several tons of iron sulfate in an iron-poor region near Antarctica, which indeed produced a phytoplankton bloom that began sinking a week later. Such activities were subsequently restricted by an updated version of an international accord called the London Convention and Protocol, which forbids polluting oceans with wastes, including dumping iron nutrients, except for “legitimate scientific research.” Then in 2012, rogue businessman Russ George took a ship off the Pacific coast of British Columbia and dumped some 100 tons of iron sulfate into the water. Critics debated whether George’s project violated international law, and no researcher has pursued iron fertilization since.

Other, more speculative geoengineering ideas have been developed by researchers over the years, too. For instance, astronomers have proposed strategies that would be deployed in space and partially block the Earth from the sun, such as launching a giant, tethered shield shade between them, or periodically blasting moon dust into space. It’s an out-there idea, said Benjamin Bromley, a University of Utah astrophysicist who led a study on the possibilities for lunar dust and who concedes he’s ventured out of his lane. “But it’s absolutely worth exploring. We would hate to miss an extraordinary opportunity to buy us some more time, should the critical measures we take on Earth fail.”

Astronomers have proposed geoengineering strategies deployed in space to partially block the Earth from the sun. In this illustration, a sun “umbrella” is tethered to an asteroid. Visual: Brooks Bays/University of Hawai’i Institute for Astronomy

In one simulation, dust is launched from a point between the sun and Earth, creating a shadow on the planet. This illustration shows how the stream of dust would appear from Earth. With the right launch point, the dust will stay in an orbit that casts a continuous shadow. Visual: Benjamin Bromley/University of Utah

Although space-based geoengineering avoids some risks of taking action within Earth’s atmosphere, either of these projects would be mind-bogglingly, and perhaps prohibitively, costly. István Szapudi, a University of Hawaii astrophysicist who proposed the sun shield, acknowledges the huge costs, even if launch costs continue dropping, but describes it as a matter of priorities. “If we spent 10 percent of what people spend on weapons in a year, for a few decades then we could easily do this project. How cool it would be, instead of spending on stuff that destroys the Earth, we spend it on something that would make the Earth more livable,” he said. In any case, if the climate crisis becomes more dire, policymakers and investors might begin taking seriously ideas that today seem outlandish.

Today, most researchers are more sanguine about more down-to-earth approaches to limiting incoming sunlight: solar geoengineering or solar radiation management. Here, researchers would reflect some sunlight away from the ground for a period of time, temporarily cooling the planet for however many decades it takes to cut carbon levels. Two of the main approaches involve spraying particles with the goal of reflecting sunlight. The first, called stratospheric aerosol injection, involves high-altitude airplanes or tethered balloons releasing millions of tons of small reflective particles, like sulfuric acid, into the stratosphere, which is around seven to 30 miles above the ground. The second, marine cloud brightening, involves misting the lower atmosphere with sea-salt aerosols to make clouds more reflective over particular parts of the ocean — the same approach that the University of Washington researchers aimed for in Alameda.

Both have analogs in the real world, Ricke said, allowing scientists to estimate the impacts of the techniques. Stratospheric aerosol injection, for instance, is similar to the large amounts of dust and ash thrown up by large volcanoes, such as Mount Pinatubo in the Philippines, whose 1991 eruption single-handedly cooled the planet by half a degree Celsius for more than a year. Scientists can look at records of such examples to see how much the planet cooled and for how long. Scientists also have learned from measurements of sulfur particles emitted by ships’ exhaust, which create wispy, reflective, contrail-like clouds, similar to what marine cloud brightening could achieve. “Those are the two methods right now that it seems like could potentially be economically and technically feasible and could reduce risks if they work,” she said. (Some researchers consider these geoengineering concepts distinct from carbon dioxide removal projects intended to achieve negative emissions. So far, these carbon removal efforts have been smaller in scale, are independent of one another, and would take longer to take effect, but if they expand rapidly, they too come with environmental impacts and drawbacks.)

In a 2012 satellite image, cloud trails created by ship exhaust is seen off the coast of California. These wispy, reflective, contrail-like clouds, known as “ship tracks,” are similar to what marine cloud brightening could achieve. Visual: Jeff Schmaltz/NASA

Neither approach is without risk. “With stratospheric aerosol injection, we are more or less certain it could work, as in it could cool the planet substantially, but with many side effects,” said Peter Irvine, a geoengineering and climate researcher at University College London. He assesses cloud brightening similarly, but with more uncertainties about how it could be deployed and about the precise particles needed.

Among those side effects: the aerosols could change rainfall patterns, and delay the recovery of the ozone layer. Those drawbacks could be long-lasting, too. If countries or companies commit to solar geoengineering, they’d need to continue it for however many decades or centuries it takes to address the root causes of global warming — the burning of fossil fuels — which could be costly in terms of resources and tradeoffs.

“Even if this is a bad idea, we should know more to be sure,” Irvine said.

But scientists’ attempts to conduct real-world experiments have foundered on public and policymakers’ concerns. The researchers who led the failed attempt to experiment in Alameda declined Undark’s interview requests. In a statement sent by email, the team described providing “extensive data” on the proposed experiment to spray sea-salt particles into the air, adding that “all of the experts engaged affirmed the safety of the sea-salt spray involved in the studies.”

Other geoengineering experts closely watched the outcome. In some sense, what happened in Alameda may have blown up in part because the researchers’ leadership team may have conducted their proposal process in “a very closed, secretive way,” said David Keith, head of the Climate Systems Engineering initiative at the University of Chicago.

That approach may have been in direct reaction to Keith’s own past failed attempts at gaining approval for a geoengineering experiment, he said, which was similarly thwarted by public concerns and local authorities’ skepticism. In the 2010s, when Keith was at Harvard University, he and a colleague, climate scientist Frank Keutsch, proposed lofting high-altitude balloons fitted with airboat propellers that would release between 100 grams to a couple kilos’ worth of mineral dust, like calcium carbonate or sulfuric acid. The researchers planned to then measure and observe how the tiny particles disperse and reflect sunlight. The project, called the Stratospheric Controlled Perturbation Experiment, or SCoPEx, was necessary, the team argued, because it wasn’t clear whether existing computer simulations would truly align with a real-world scenario.

But they struggled in their efforts to find a location to host the test. Keutsch and Keith first sought to deploy the balloons in Tucson, Arizona, but partly because of logistical and scheduling challenges while working with balloon operators during the pandemic, they shifted their sights to other possible sites. In December 2020, the team announced plans to test their platform in the Lapland region of northern Sweden, where they partnered with the Swedish Space Corporation. But they encountered multiple critics, including Indigenous tribes and environmental groups, such as the Saami Council, the Swedish Society for Nature Conservation, and Swedish climate activist Greta Thunberg. The Saami Council objected to a lack of consultation and to an approach that doesn’t address the carbon emissions driving climate change, while environmentalist critics saw the experiment as a step heading down a slippery slope of full deployment. An advisory council recommended holding discussions with the public before launching any flights, and when the council did not recommend proceeding, the Swedish space agency called it off, forcing them to cancel their plans. In March 2024, according to a university statement, Keutsch “announced that he is no longer pursuing the experiment.”

An illustration of David Keith and Frank Keutsch’s proposed high-altitude balloon fitted with an airboat propeller (the “StratoCruiser”), which is shown releasing small particles that would disperse and reflect sunlight. Visual: Dykema et al, Philosophical Transactions of the Royal Society 2014

A balloon — not intended for geoengineering — is inflated at the Esrange Space Center in Sweden. Keith and Keutsch partnered with the Swedish Space Corporation to test their project at this site, but the experiment faced pushback and was called off. Visual: NASA/Dartmouth/Alexa Halford

The failure has prompted postmortems by the scientists. “I think we tried to be too open, we tried to always talk to journalists and tell them, ‘This is what we’re thinking of doing’ and so on,” Keith said. “And it ended up blowing up in the press and was way over-reported, and I think that’s part of what killed it.”

Despite their scuppered plans, Keith believes public opinion, and the views of scientists and political leaders, are changing, with more people than before in favor of researching, experimenting, or deploying geoengineering technologies. “The fraction of scientists who support research is probably quite high,” he said. “More than it was a decade ago.”


While geoengineering originally was anathema to the scientific and environmental communities, that landscape has begun to shift in recent years. Ricke herself has championed solar geoengineering research, such as in a talk at South by Southwest last year, where she and other panelists made the case that while geoengineering is still contentious today, depending on the results of that research, it could become a viable climate solution in combination with emissions reductions and other strategies.

“Shunning this research is riskier than studying it,” Ricke wrote in a 2023 piece for Nature magazine. Most knowledge about solar geoengineering so far has come from computer modeling, she continued, but even the most realistic models could miss real-world complexities. Researchers’ models also don’t reflect the geopolitical reality that there likely won’t be global cooperation on geoengineering, and uncoordinated, regional projects could arise instead, she wrote. But the impacts of such a scenario aren’t well understood.

Her perspective isn’t a fringe one: Such research now enjoys the imprimatur of the National Academies of Sciences, Engineering, and Medicine, which published reports in 2015 and 2021, and the American Geophysical Union, which includes leading U.S.-based climate scientists. The National Academies committee recommended continuing to investigate solar geoengineering, including the possible unintended consequences and geopolitical challenges involved, said Chris Field, a climate scientist at Stanford University’s Woods Institute for the Environment and chair of the latter report. He acknowledged that ongoing research may show that the technology won’t work as intended, and in that case, he said, “we should then refocus attention on the things that will work, including cutting greenhouse gas emissions.”

Even if solar geoengineering does work as planned and reduces global warming, he added, some harmful climate impacts, like ocean acidification, would be unaffected by such interventions — another reason to prioritize reducing emissions.

Other influential geoengineering backers include billionaire philanthropist Bill Gates, who has been supporting and investing in research projects, including SCoPEx, since the 2000s. Some members of U.S. Congress have expressed support as well, evidenced by the push to mandate clear research plans, and Quadrature Climate Foundation, the philanthropic arm of a London-based hedge fund, has become a major investor. Still, 75 percent of Americans are somewhat or very concerned about using solar geoengineering, a 2021 Pew survey found, though only a minority are familiar with the technology. There’s some evidence that people who are more exposed to information about climate change may support geoengineering more, according to another study, which was co-authored by Irvine. Public opinion research shows that many people share the same concerns that environmental and Indigenous groups have, though overall there’s not much public awareness of geoengineering yet.

Some of the concern stems from what climate researchers call the “moral hazard” problem — the possibility of humanity geoengineering its way out of climate impacts could discourage decarbonization efforts. “I think the greatest opposition comes from those closest to climate change, because I think it’s viewed as the wrong way to deal with climate change,” Irvine said. “There’s a concern that it’ll distract from the real solutions, which are of course cutting emissions.”

Despite the growing support for geoengineering research, the scientific community is no monolith, and plenty of other researchers, like Utrecht University’s Biermann, have grave concerns. He fears that if expensive, high-profile experiments come to fruition, large-scale deployment eventually will become unavoidable, for better or worse. In 2022, he and others began calling for a non-use agreement on solar geoengineering — that is, a moratorium. Their open letterhas drawn more than 530 signatories from 67 countries so far, including prominent scientists like Michael E. Mann of the University of Pennsylvania; Dirk Messner, head of the German Environment Agency; Indian writer Amitav Ghosh; and Åsa Persson, research director of the Stockholm Environment Institute.And while there is increasing support for geoengineering in the U.S. among researchers and some policy makers and environmental groups, Biermann points out that there is not much support in European countries and the Global South, especially African nations and small island states. Some 2,000 nongovernmental groups have endorsed the non-use agreement as well, Biermann noted, in an open letter that reads in part: “there is a risk that a few powerful countries would engage in solar geoengineering unilaterally or in small coalitions even when a majority of countries oppose such deployment.”

Biermann views the risks and prospects for geoengineering differently compared to scientists like Ricke and Keith. “Geoengineers are pessimistic regarding climate policy, and they’re optimistic regarding having 1,000 stratospheric aircraft that aren’t invented yet to fly around the stratosphere for 100 years, 24-7, without any geopolitical turmoil,” he said. He and his colleagues don’t want to regulate geoengineering modeling and computer simulations — he supports academic freedom and doesn’t want anyone policing scientists’ labs — but he draws the line at outdoor experiments and calls for bans on public funding for the development of such technologies.

Once people invest in the technology in earnest, whether it’s balloons, drones, or aircraft, there will be considerable momentum toward actually using it, he argues. Moreover, in his perspective, to really understand how geoengineering technology might work or not, one would need planet-wide experiments, but such projects would be little different than large-scale deployment. In other words, the only way to find out if the technology is safe is for someone to take a gamble with planetary stakes.

As in the scientific community, geoengineering has divided environmental groups. Some, like Friends of the Earth and Greenpeace, reject geoengineering in any form, while the Union of Concerned Scientists opposes it because of the “environmental, ethical and geopolitical risks, challenges and uncertainties.” The U.S. nonprofit Center for International Environmental Law opposes the technology for other reasons, including possible catastrophic consequences and the potential for distraction from other climate solutions. “You can’t test for the impact of deploying geoengineering technologies at scale without deploying them at scale. That is the problem,” said Church, the group’s geoengineering campaign manager, echoing arguments by Biermann and moratorium proponents.

A decade ago, the Environmental Defense Fund wasn’t exactly gung-ho about solar geoengineering. Now, however, among the major environmental organizations, they stand alone as a clear booster, supporting small-scale field research. Eventually, the EDF will begin to sponsor research projects, which could involve both stratospheric aerosols and cloud brightening, to gain “decision-relevant data” and learn more about “potential downstream impacts on agriculture and air quality,” said Brian Buma, a senior climate scientist at the organization. The group’s position hasn’t really shifted, he argues. “It’s not a solution; it’s potentially a tool to stave off some of the worst effects, assuming a good mitigation pathway. We call it ‘peak-shaving,’” he said, but it’s not a substitute for reducing emissions.


Could a maverick billionaire or rogue state go it alone and unleash a geoengineering project, without any official approval or oversight? Currently, while some national and international laws prohibit large scale experiments, there are exemptions for small-scale geoengineering projects, so there’s not much to stop someone or some organization from taking such actions, particularly in the United States. Only a few companies are actively involved in geoengineering research and development at this time, however, and they don’t yet add up to an advanced geoengineering industry.

Over the past few years, geoengineering research and hype has spawned investment in new startups attempting to capitalize on growing interest and on impatience with sluggish climate policies. For example, in 2022, Andrew Song, an entrepreneur, co-founded Make Sunsets, a startup backed by Silicon Valley-based venture capital firms like Boost VC and Draper Associates. The company has focused its efforts on developing balloons releasing stratospheric aerosols, mainly sulfur dioxide. To make money, the company sells cooling credits, at a rate of $1 per metric ton of carbon dioxide emissions they claim to offset, with the idea that corporations buying them can do so to reach their net-zero emissions targets.

Song lamented the fate of Keith’s ScoPEx, the canceled stratospheric balloon research project. “We thought, if the top scientist in the world, funded by Bill Gates, gets $20 million dollars, can’t even launch a single balloon with some instrumentation and a little bit of calcium carbonate, that’s not the right path,” Song said. “He tried to get permission from everybody and then gets blocked by a bunch of reindeer herders.” That’s when he and fellow cofounder Luke Iseman, formerly at Y Combinator, a group that helps to launch startup companies, decided to start small, landing on their strategy of cheaper balloons, of which they’ve launched 90 so far, according to their website. They have yet to run into any regulatory issues in California or Mexico, he said. Their balloons reportedly flew over the airspace of multiple tribes in California, a potential sticking point, but Song told Undark that the company has altered its flight paths to avoid these areas, following that critical news coverage.

Song expressed confidence about the future of stratospheric aerosols, which he refers to as “sunscreen for Earth” or, more abstractly, “Ozempic for climate change.” He’s said that he’s skeptical that governments will come together and agree on climate policy or on deploying geoengineering. “It’s going to be a unilateral decision. If it’s not us, it’s going to be India,” he said. He does worry that, in one geoengineering scenario, the strength of the Indian monsoon season will decrease, threatening millions with drought and famine, a nightmare scenario depicted in sci-fi author Neal Stephenson’s novel “Termination Shock,” which Iseman has read. But the alternative of living in a world with 4 degrees C warming would be far worse, he argued.

The view from a camera attached to a biodegradable latex balloon launched by the startup company Make Sunsets. After the balloon popped in the stratosphere, it released 811 grams of sulfur dioxide, an aerosol which reflects sunlight, resulting in a cooling effect on the planet. The release of this balloon is enough to offset the warming caused by emissions from about 176 gas-powered U.S. cars for a year, according to the company’s co-founder Andrew Song. Visual: Make Sunsets

Song also sees one of Make Sunsets’ roles as providing much-needed field data for scientists like Keith. “We obviously want to collaborate, but we’re seen as the pariahs right now, we’re seen as the bogeymen,” Song said. Keith, for his part, sees Make Sunsets more as a “theater piece” than as a startup. But stunts can be effective at changing minds, he added.

Meanwhile, a secretive Israeli-U.S. startup called Stardust Solutions is trying to use its own particular brand of aerosol technology for solar geoengineering. They’re conducting their own research and development and planning a series of experiments, and they see their role as one that involves working with governments and researchers. “Decision-making regarding whether, when, and how to deploy solutions like SRM should only be taken by governments,” said CEO Yanai Yedvab, a former deputy chief scientist at the Israel Atomic Energy Commission, in a written statement to Undark. Stardust acknowledges concerns about potential harms to the ozone layer and effects on climate patterns, he continued, and they are attempting to develop a specialized aerosol particle and a deployment mechanism to mitigate such effects.

Ricke finds Stardust’s approach a concerning one. “They’re developing proprietary materials and technology and have taken a lot of investor dollars, and the only way that they’ll ever make that money back is if they convince someone to actually do solar geoengineering, which is a pretty dangerous situation to be in,” she said.


Few rules are in place, if Make Sunsets, Stardust, or someone else desires to push ahead with solar geoengineering. At the international level, the Convention on Biological Diversity, which has been ratified by nearly 200 countries but not the U.S., implemented a geoengineering moratorium, allowing some small-scale scientific research. But what’s allowed is open to interpretation, Field said. In the U.S., a company needs only to file a brief form with the National Oceanic and Atmospheric Administration 10 days before releasing aerosols in the stratosphere. The primary relevant oversight from the U.S. Environmental Protection Agency is through the Clean Air Act, which does regulate sulfur dioxide as a pollutant and as a contributor to acid rain. Other federal agencies are continuing to assess geoengineering research. According to a White House Office of Science and Technology report last year, “The potential risks and benefits to human health and well-being associated with scenarios involving the use of SRM need to be considered,” as well as the risks and benefits of unfettered climate change. The report did not initiate a government research program, though it opened the door to that possibility, and it did not propose specific new regulations, but it stated that any research program must have “transparency, oversight, safety, public consultation, international cooperation, and periodic review.”

For Ricke, setting up international rules should be a top priority. “Right now the absence of any norms or standards is leading to a situation where responsible research is being suppressed.” Instead, she said, rogue actors, including researchers, are in the driver’s seat. And they’re testing the few boundaries that exist, making it hard to produce findings and information that scientists — or anyone — can really trust.

Print Friendly, PDF & Email

41 comments

  1. Mikel

    There isn’t anything about the way regulations and risk are handled in this current global order that makes this a good idea. I wish they would stop floating the idea like some pollster trying to get a consensus.

    1. mrsyk

      Not that I like it, but we will probably be resigned to, no, begging for geoengineering in short order. I share nigel’s opinion below on odds of success.

  2. nigel rooney

    Expecting Capital to “magically” save humanity is expecting different results from the same experiment.
    Capitalism is the problem, not the solution, imho.

  3. TiPi

    There really are no techno-fixes to the overshoot in carbon emissions or resource consumption that permit business as usual. This is just another SNAFU.

    The arrogance of assuming man can always “conquer nature” totally ignores the basic fact that we don’t even fully understand or are able to precisely model environmental systems, so have no idea of unplanned consequences.

    The planet is finite and we have to learn to live within the limitations presented by planetary processes and capacities.

    Corporate capitalism prevents that.

    It is system change that is needed not geo-engineering.

    1. Jason Boxman

      Yep — No one ever mentions ending capitalism as the solution. Do I really need access to 1,000 different carbonated beverages at the grocery store, delivered from afar, consisting of mostly corn syrup and municipal water and plastic or aluminum?

      No, probably zero. No apply to just about every consumer good or manufactured foodstuff sold in America.

      But capitalists would have a sad.

    2. steppenwolf fetchit

      If the CPC ChinaGov Regime gets tired of waiting for the “system to change”, then the CPC ChinaGov Regime will do geoengineering on its own. And dare anyone who objects to try stopping them.

  4. ciroc

    Geoengineering is not as attractive to investors as AI or space exploration because it’s hard to monetize. It will remain a mad scientist’s fantasy.

    1. i just don't like the gravy

      it’s hard to monetize

      That’s where the carbon credits come in. The world’s most lucrative protection racket.

      1. Mikel

        This something that is more likely to bring about a hasty demise that will make all rents a moot point.

  5. JMH

    Termination Shock by Neal Stephenson is a fictional treatment of the sulphur dioxide in the upper atmosphere idea. The Pinatubo blip in global temperature shows clearly that it works but where and for whom and for good or ill for thee or me remains to be seen.

    1. Darthbobber

      The longer the failure to take sane measures goes on, the more attractive these lunatic schemes will seem, and eventually one or more will be allowed to proceed in a belatedly panicked atmosphere of “my god, we’ve got to do something!”

  6. Old Canuck

    These kind of experiments are yet another example of the blinkered thinking that characterizes techno-fixes. They look at part of a problem but don’t comprehend the Earth as a systemic whole. Here is a scenario as an example. Lets assume a geoengineering project goes ahead and disperses aerosols into the upper atmosphere to block sunlight. Lets also assume it is successful and blocks a percentage of sunlight hitting the Earth, lowering the temperature by a degree or two. What else is likely to happen? As the article mentions, the push to reduce carbon emissions would be greatly reduced or cease altogether, so the amount of carbon in the atmosphere continues to rise, even if the temperature does not. The effects of increased carbon and reduced sunlight would have unknown and unpredictable effects on agriculture. A large volcanic eruption could, added to the aerosols, sharply drop earths temperature, severely affecting agriculture. And increased atmospheric carbon would be absorbed by the oceans, turning them increasingly acidic. This would immediately affect seafood production and could eventually kill off the plankton which produces much of the worlds oxygen.

  7. clarky90

    Tikkun Olam: Repairing the World
    (This phrase with kabbalistic roots has come to connote social justice).

    https://www.myjewishlearning.com/article/tikkun-olam-repairing-the-world/

    The Kabbala is going mainstream! We are all, now, being immersed in the medieval Kabbala.

    “……The phrase “tikkun olam” remains connected with human responsibility for fixing what is wrong with the world.

    Contemporary usage of the phrase shares with the rabbinic concept of “mipnei tikkun ha-olam” a concern with public policy and societal change, and with the kabbalistic notion of
    “tikkun” the idea that the world is profoundly broken and can be fixed only by human activity.

    Tikkun olam, once associated with a mystical approach to all mitzvot, now is most often used to refer to a specific category of mitzvot involving work for the improvement of society — a usage perhaps closer to the term’s classical rabbinic origins than to its longstanding mystical connotations…….”

    1. steppenwolf fetchit

      Well, and there is a Leftie-poo magazine called Tikkun Magazine, which is devoted to social dogooding and social dogooding theory.

  8. mgr

    No doubt the underlying hope for many is that such solutions can become a permanent substitute for moving off fossil fuels.

    Actually, we’ve had a long time in order to “de-carbonize,” since the ’70s when fossil fuel companies foresaw the looming climate crisis due to the unbridled use of fossil fuels. How has that time been used?

    What has changed? Since COP24 when Greta Thunberg became the arch enemy of fossil fuel companies, fossil fuel usage has only expanded. So now, plans to use geoengineering to gain a few more years that can be used to maintain the status quo a little longer so fossil fuel companies can wring a few more barrels of oil from the earth?

    Not only do we need good solutions based on life-style changes that accept the reality of a planet with finite resources, and adjust accordingly, we need to address and throttle the entities that are fighting tooth and nail to undermine that effort.

  9. TomDority

    Limited nuclear exchange should do it – it ought to kick up enough dirt to get a handle on things and all the while avoiding all those other pesky concerns.
    Seems like all the best brains in the neoliberal economic and captured political folks are pushing that way… what could go wrong… it is always someone else who is responsible – it’s the american way.
    Sorry – that was even to much for my active cynicism.

    1. BeliTsari

      We’d joked about India vs Pakistan (with the Hindu Kush to launch the lethal dust over China, decades ago. That Tech Boi oligarch’s media would declare, “it’s just too late. But if you want, we’ll save you? Sign, HERE!” Vonnegut’s Ice 9 came from his brother’s post war cloud seeding experiments. It’s basically white-flight yuppie boomers, who’ve doomed all life on earth. Let them pay us to carry them to the compost heap? We’d have to fertilize an awful lot of hemp plants?

    2. mrsyk

      I’m not sure “limited” is an option these days. Look around at the who-all’s got fingers on the trigger. A WWIII with a big nuclear finale might preserve life on earth by a combination of stopping runaway temperature increase via sun screening and eliminating a vast majority of us.
      Sorry here as well. Cynicism is when this looks like the best case scenario.

  10. ISL

    This article danced around the main issue. If geo-engineering lessens global warming then why agree to decrease emissions (which costs!)?

    I think one would be hard-pressed to find a politician in power who would not take the easy way out—geoengineering and no costly GHG cuts. As an example that Richard Wolff likes, why do politicians prefer debt (owed to rich people) versus taxes on rich people? It prevents the politician from making a choice between the constituents and the moneyed class.

    Instead, the article breezily sweeps it under the rug as a moral hazard without even explaining what the moral hazard is!

  11. Matthew G. Saroff

    Unless and until the profit motive is completely removed for such and endeavor, it is more likely to cause harm than good.

  12. HH

    Is there an alternative? Otherwise, there is no way that the uncooperative and badly-led countries of the world will avoid crossing the danger line of temperature increase. Geo-engineering may be a bad option, but it is the last available one.

    1. SocalJimObjects

      Geo engineering may not even be a real option because the world might encounter a really severe energy crisis in the next couple of decades. If there’s no fuel, how are you going to transport those sulfur. But I am not going to worry because the world’s smartest person a.k.a Elon Musk will head a new DOGE, Department of Geo Engineering and the party will continue, am I right?

    2. Matthew G. Saroff

      Actually, there is, and there is already a treaty approve method for it.

      If you have a carbon tax that works like a VAT, meaning that it is rebated upon export and charged upon import, you would cover all of your trading partners.

      If you take the example of a Cuisinart being exported from France to Italy, the 20% French tax is refunded upon export, and the 22% Italian tax is charged on import.

      This is explicitly legal under the WTO.

      For countries that will not give accurate carbon data, use gross emissions and GDP data to determine the tax,

  13. Jeremy Grimm

    Climate models are evolving. New climate effects are discovered, measured, quantized, reduced to mathematics, parametized and incorporated into existing climate models. Too much remains unknown and too little understood to support any sort of deliberate geoengineering. Humankind does not well-enough understand the geoengineering already resulting from the Age of Fossil Fuels sufficiently to seriously consider some large scale deliberate geoengineering, fantasizing regarding some beneficial repairs to the tremendouss damage already done to the Earth’s climate.

    The first practicality that immediately hits me, hard, is the complete lack of international control and management of the geoengineering actions which might be taken. Without international coordination of geoengineering efforts, the potential for gross mistakes makes geoengineering unconscionable. Suppose ‘X’ finds exactly how to geoengineer a ‘fix’ at the same time ‘Y’ finds exactly how to geoengineer the same or similar ‘fix’ and both ‘X’ and ‘Y’ fix things independently? I believe that might constitute what might be called overshoot.

    The almost complete lack of Knowledge about climate in regimes beyond the present and immediate past, should recommend inaction to any but the most foolhardy of our multi-billionaire ‘benefactors’, and should recommend harsh constraints on all actions toward geoengineering–excepting such moderate schemes as white roofs, habitats protection, and reducing power consumption along with goods consumption.

    Instead of geoengineering, Humankind should focus on immediate concerns like pending famines, large scale emigrations to escape death-dealing climates, or ‘famines’ of potable water. Once Humankind better understands Climate and has better models for Climate to model change, I might become a proponent of geoengineering (should I live so long).

    The post suggested numerous dubious justifications for geoengineering: “…what previously appeared to be a risky Hail Mary technofix has gained respectability.” In whose imagination !?
    “…buying time for decarbonization…” to avoid missing “…an extraordinary opportunity to buy us some more time,”
    AND what decorbonization might that be, that we buy more time for!? More time for what exactly!? I am not aware what alternatives offer so much future promise.

    “…there likely won’t be global cooperation on geoengineering, and uncoordinated, regional projects could arise instead,” WOW! Ya Think? Global cooperation? There is so little at present!
    “…allowing powerful billionaires or individual countries to unleash hazardous technologies without input or agreement from the public more broadly, all of whom would be affected.” The only difficulty with that POV[Point of View] is that billinaires and countries already will/do unleash hazardous technologies, many of which powerful billionaires or individual countries champion.
    Key Bottom line: “Geoengineering doesn’t tackle the root causes…” “I think we tried to be too open, …”
    What BALONEY!!!!!

    1. Adam1

      Wow! Thanks for posting the link. I was aware of the 1816 year without a summer, but I had never given thought to it nudging migration. I have 3 ancestral brothers who all moved around 1817. One moved from Vermont to southern central NY and the 2 other brothers moved from the hills of central NY to communities near Lake Ontario which is known to have a modifying effect on the local climate… the frost free growing season is several weeks longer. It hadn’t occurred to me before that there might have been a connection.

  14. PlutoniumKun

    Geoengineering is highly dangerous, but then again, that’s what we are doing by pumping enormous amounts of carbon dioxide and methane into the atmosphere and stripping vast areas of the planet of their natural forest cover.

    The reality is that someone, somewhere, will try large scale geoengineering. There are already extensive live experiments ongoing in the Himalayas (China and India) to change regional weather patterns, and some major actors, whether private, national, or transnational, will decide its in their interest to do it, and won’t ask for permission from everyone else on the planet.

    A key issue of course is that while some of the proposals clearly interfere with the ‘commons’ of our shared planet, others are less straightforward – geoengineering covers a vast range of potential activities, from encouraging whale numbers, altering the acidity of the oceans, dams intended to alter hydrological or glacial cycles, and so on. Its also unclear how you distinguish projects with secondary geoengineering effects from those whose primary purpose is changing the climate (forest/agriculture policy in the Amazon, or managing whale populations and fisheries, for example).

    In an ideal world, we would have some sort of transnational treaty to govern these things, but its hard to see how this could work in reality given the myriad number of national issues involved. I don’t really think a hard ban is workable either, unless someone is willing to go to war over the issue.

    1. BeliTsari

      When taxpayer funds can be upwardly redistributed to tech boi Oilgarchs, gas & oil conglomerates & PMC Ponzi scheme speculators; to put on a show, with media collusion; whistleblowing, blog-aggregators & journalists all silenced; WHY would our senile kleptocrats stop crushing AGW-mitigation, they’d forced overseas, four decades back (they’ve all been installed SPECIFICALLY to destroy?)

  15. Zagonostra

    You’ll see below that unregulated and often non-transparent experiments are already underway

    I was driving back from Roswell, GA to Fort Lauderdale, FL over Thanksgiving break on I95. I had a clear view of the sky for several hours. I clicked pictures on my phone as I saw the sky crisscrossed with planes with some emission that expanded, basically whitening-out the blue sky. It was very depressing. I sent pics to friends and one sent me a link saying that some legislation that the gov’r was backing was being discussed to prohibit any kind of solar mediation.

    https://www.tallahassee.com/story/news/politics/2024/12/03/florida-ileana-garcia-weather-modification-chemtrails/76728150007/

    1. cfraenkel

      “Some emission” = water. Burn hydrocarbons in oxygen and you get water + CO2. Those are clouds.

      If you want to complain, complain about the invisible gas put out by all those planes (and the vehicle you were driving in…)

  16. Donaldo

    Geoengineering, for those thinking that social engineering and financial engineering are just not harmful enough.

  17. TomDority

    We have been geo-engineering for many decades now- a century of experiment or more with a knowledge of the adverse effects going back 50-60 years – it’s more a geochemical experiment but lets add geo-genetic – that ought to speed some changes up a bit – we have such a long history of tucking our heads under, pointing to others and ducking responsibility

  18. cfraenkel

    Everyone always dunks on geoengineering, even when it’s just research to find out how it might work. But who is doing anything about curtailing our advertising driven consumer culture? There’s no might involved in whether or not that is driving warming.

    Everyone always trots out ‘unintended consequences’. Except for when it is a popular sounding initiative, like mandating low-sulfur fuel on ships, which singlehandedly cost us something like a years worth of warming. (not saying it wasn’t a good thing, in net, just pointing out the knee jerk nature of the responses.)

    In the article, one of the complaints from the Alameda folks were the lack of transparency. Well, what do you expect when the automatic response is ‘No, Never!’? Particularly when all players already know that’s what the automatic response will be. Why bother asking then?

    (my personal opinion is there’s no solution without both geoengineering and social engineering – in particular targeting the profit and looting incentives in our culture. But I’m not holding my breath that we’ll get either. As PK said above, perhaps China or some non-western group will implement a geoengineering project or many, without asking for the West’s permission. More power to them.)

  19. WillD

    Emphatically – NO! Do not try geo-engineering, it will have numerous unforeseen and likely extremely negative consequences, some of which might be irreversible!

    We do not know nearly enough about climate to even guess what would happen!

    Seeing Bill Gates’ name in this article worries me a lot! He is not a scientist, of any sort, he is a super-rich meddler with an overinflated notion of his own importance and power. He is more of a threat than anything else.

  20. MFB

    Obviously geoengineering is being punted as a way of promoting fossil fuel use, which seems profitable in itself. That, presumably, is why the big fake green organisations funded by multinationals are on board. However, I suspect that geoengineering will be incredibly expensive, meaning that oligarchs will be able to use it to pump money out of the public purse into their own pockets.

    That’s what it’s all about. Nothing to do with ending global warming. And that’s why the Chinese aren’t doing it — they don’t believe it would work, they don’t trust it, and they don’t want oligarchs to have overwhelming political power (the oligarch controlling the geoengineering system would be immensely richer if it didn’t work. but if it did work, the oligarch would be in a position to dominate the world — do like I say or the environment gets it).

Comments are closed.